The effect of physiologic and mechanical aging on the performance of peak flowmeters.
نویسندگان
چکیده
PURPOSE To investigate the effects of physiologic and mechanical aging on peak flowmeters. MATERIALS AND METHODS Eight each of MiniWright (MW; Clement Clark; Harlow, UK), Personal-Best (PB; HealthScan Products; Cedar Grove, NJ), Vitalograph (V; Vitalograph Ltd; Buckingham, UK), and Breath-Taker (BT; Medical Development Australia; Melbourne, Australia) peak flowmeters were assessed for accuracy and repeatability before and after aging using a computer-driven syringe to deliver peak flows from 100 to 700 L/min. Four of each type of flowmeter were physiologically aged by normal subjects performing up to six peak flows daily for 1 year. The remaining four of each flowmeter were mechanically aged using an accelerated aging device to deliver 2,000 exponential waveforms with a peak flow of 600 L/min over a period of 3 h. RESULTS The V and BT flowmeters were linear and accurate over the range 100 to 700 L/min, while the PB overread at high flows. The MW was alinear throughout. The SD of the difference between readings before and after aging ranged from 8.6 to 40.6 L/min (mean, 9.2). Comparing the slopes of the relationship of actual against reference peak expiratory flow (PEF) showed that 16 flowmeters--5 BTs, 6 MWs, 4 PBs, and 1 V had no significant change in slope after aging. Mechanical aging caused a consistent underreading in PEF at high flow rates. Physiologic aging showed a more variable pattern both within and between flowmeter types. The MW was the most affected by physiologic aging, producing overestimates of PEF by as much as 100 L/min at 500 L/min. CONCLUSIONS We conclude that the effects of physiologic and mechanical aging are different, and that while mechanical aging may provide a guide to the effects of aging, studies using physiologic aging would be more appropriate.
منابع مشابه
Effect of Thermal and Mechanical Aging on Flexural Strength of Zirkonzahn and Mamut Zirconia Ceramics
Objective: Despite the high strength of zirconia restorations, aging in the oral environment and masticatory loading may result in transformation of tetragonal to monoclinic phase and decrease their strength. Statements in this regard are controversial. This study sought to compare the flexural strength (FS) of Zirkonzahn (ZirkonZahn, Cercon, Ceramill) and Mamut (Dubai Medical Equipment LLC, ...
متن کاملThe Effect of Artificial Aging Treatment and Lubrication Modes on the Cutting Force and the Chip Surface Morphology when Drilling Al-Si-Mg (A356) Cast Alloys
This article reports the effects of various artificial aging methods and lubrication modes (dry, mist, wet) on the recorded cutting forces and chip morphology in drilling Al-Si-Mg (A356) cast alloys. In the course of this work, the work part sampled were as-received alloy (T0), solution heat-treated alloy (SHT) and then aged alloys at 155°C, 180°C, and 220°C (T4, T6, T61, T7), respectively. The...
متن کاملInfluence of aging temperature on phase transformation and mechanical behavior of NiTi thin films deposited by magnetron sputtering technique
In this study, NiTi thin films were deposited on the glass and NaCl substrates by means of magnetron sputtering method. The influence of aging temperature, over the range 300-500 oC, on phase transformation and mechanical properties of the sputtered NiTi thin films were studied by differential scanning calorimetry (DSC) and nano-indentation assay, respectively. The DSC curves showed that the ag...
متن کاملEnvironmental effects on mechanical properties of glass/epoxy and fiber metal laminates, Part II: Isothermal aging
The aim of this study is to investigate effects of isothermal aging on mechanical properties of fiber metal laminates (FMLs) and glass/epoxy composites. For this purpose, both materials were fabricated using the wet lay-up manufacturing technique under vacuum pressure. Both the glass/epoxy composites and the FML specimens were then subjected to isothermal aging (130°C, dried air) for up to 5 we...
متن کاملMechanical Behavior of Hybrid Fiber Reinforced High Strength Concrete with Graded Fibers
Brittleness, which was the inherent weakness in High Strength Concrete (HSC), can be avoided by reinforcing the concrete with discontinuous fibers. Reinforcing HSC with more than one fiber is advantageous in an overall improvement of the mechanical performance of the composite. In this experimental study, Hybrid Fiber Reinforced High Strength Concrete (HyFR-HSC) mixes were formed by blending si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chest
دوره 113 3 شماره
صفحات -
تاریخ انتشار 1998